Thermally responsive fluid behaviors in hydrophobic nanopores.

نویسندگان

  • Ling Liu
  • Jianbing Zhao
  • Patricia J Culligan
  • Yu Qiao
  • Xi Chen
چکیده

A fundamental understanding of the thermal effects on nanofluid behaviors is critical for developing and designing innovative thermally responsive nanodevices. Using molecular dynamics (MD) simulation and experiment, we investigate the temperature-dependent intrusion/adsorption of water molecules into hydrophobic nanopores (carbon nanotubes and nanoporous carbon) and the underlying mechanisms. The critical infiltration pressure is reduced for elevated temperature or increased pore size. The variation of wettability is related to the thermally responsive fluid characteristics, such as the surface tension and contact angle, which arise from the variations of multiple atomic variables including the confined water density, hydrogen bond, and dipole orientation. With thermal perturbation, most of these physical quantities are found to be more significantly influenced in the confined nanoenvironment than in the bulk. By utilizing the prominent thermal effect at the nanoscale, the feasibility and prospective efficiency of employing nanofluidics for energy storage, actuation, and thermal monitoring are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature dependence of fluid transport in nanopores.

Understanding the temperature-dependent nanofluidic transport behavior is critical for developing thermomechanical nanodevices. By using non-equilibrium molecular dynamics simulations, the thermally responsive transport resistance of liquids in model carbon nanotubes is explored as a function of the nanopore size, the transport rate, and the liquid properties. Both the effective shear stress an...

متن کامل

Experimental study on energy dissipation of electrolytes in nanopores.

When a nonwetting fluid is forced to infiltrate a hydrophobic nanoporous solid, the external mechanical work is partially dissipated into thermal energy and partially converted to the liquid-solid interface energy to increase its enthalpy, resulting in a system with a superior energy absorption performance. To clarify the energy dissipation and conversion mechanisms, experimental infiltration a...

متن کامل

Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition.

Elastin-like polypeptides (ELPs) composed of a VPGXG repeat undergo a reversible phase transition in aqueous solution. They are hydrophilic and soluble in aqueous solution below their transition temperature (T(t)), but they become hydrophobic and aggregate when the temperature is raised above their T(t). In this study, we examine the quantitative uptake of a fluorescence-labeled, thermally resp...

متن کامل

A hybrid perturbed-chain SAFT density functional theory for representing fluid behavior in nanopores: mixtures.

The perturbed-chain statistical associating fluid theory (PC-SAFT) density functional theory developed in our previous work was extended to the description of inhomogeneous confined behavior in nanopores for mixtures. In the developed model, the modified fundamental measure theory and the weighted density approximation were used to represent the hard-sphere and dispersion free energy functional...

متن کامل

Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 25 19  شماره 

صفحات  -

تاریخ انتشار 2009